An $$\ell ^2-\ell ^q$$ Regularization Method for Large Discrete Ill-Posed Problems
نویسندگان
چکیده
منابع مشابه
Square regularization matrices for large linear discrete ill-posed problems
Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...
متن کاملProjected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems
The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular...
متن کاملA $2\ell k$ Kernel for $\ell$-Component Order Connectivity
In the `-Component Order Connectivity problem (` ∈ N), we are given a graph G on n vertices, m edges and a non-negative integer k and asks whether there exists a set of vertices S ⊆ V (G) such that |S| ≤ k and the size of the largest connected component in G−S is at most `. In this paper, we give a kernel for `-Component Order Connectivity with at most 2`k vertices that takes nO(`) time for eve...
متن کاملFractional Tikhonov regularization for linear discrete ill- posed problems
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...
متن کاملLagrangian methods for the regularization of discrete ill-posed problems
In many science and engineering applications, the discretization of linear illposed problems gives rise to large ill-conditioned linear systems with right-hand side degraded by noise. The solution of such linear systems requires the solution of a minimization problem with one quadratic constraint depending on an estimate of the variance of the noise. This strategy is known as regularization. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2018
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-018-0816-5