An $$\ell ^2-\ell ^q$$ Regularization Method for Large Discrete Ill-Posed Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square regularization matrices for large linear discrete ill-posed problems

Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...

متن کامل

Projected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems

The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular...

متن کامل

A $2\ell k$ Kernel for $\ell$-Component Order Connectivity

In the `-Component Order Connectivity problem (` ∈ N), we are given a graph G on n vertices, m edges and a non-negative integer k and asks whether there exists a set of vertices S ⊆ V (G) such that |S| ≤ k and the size of the largest connected component in G−S is at most `. In this paper, we give a kernel for `-Component Order Connectivity with at most 2`k vertices that takes nO(`) time for eve...

متن کامل

Fractional Tikhonov regularization for linear discrete ill- posed problems

Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...

متن کامل

Lagrangian methods for the regularization of discrete ill-posed problems

In many science and engineering applications, the discretization of linear illposed problems gives rise to large ill-conditioned linear systems with right-hand side degraded by noise. The solution of such linear systems requires the solution of a minimization problem with one quadratic constraint depending on an estimate of the variance of the noise. This strategy is known as regularization. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2018

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-018-0816-5